
Introduction to the R LanguageIntroduction to the R Language
Control Structures

Roger Peng, Associate Professor
Johns Hopkins Bloomberg School of Public Health

Control StructuresControl Structures
Control structures in R allow you to control the flow of execution of the program, depending on
runtime conditions. Common structures are

Most control structures are not used in interactive sessions, but rather when writing functions or
longer expresisons.

if, else: testing a condition

for: execute a loop a fixed number of times

while: execute a loop while a condition is true

repeat: execute an infinite loop

break: break the execution of a loop

next: skip an interation of a loop

return: exit a function

·

·

·

·

·

·

·

2/14

Control Structures: ifControl Structures: if
if(<condition>) {

 ## do something

} else {

 ## do something else

}

if(<condition1>) {

 ## do something

} else if(<condition2>) {

 ## do something different

} else {

 ## do something different

}

3/14

ifif
This is a valid if/else structure.

So is this one.

if(x > 3) {

 y <- 10

} else {

 y <- 0

}

y <- if(x > 3) {

 10

} else {

 0

}

4/14

ifif
Of course, the else clause is not necessary.

if(<condition1>) {

}

if(<condition2>) {

}

5/14

forfor
for loops take an interator variable and assign it successive values from a sequence or vector. For
loops are most commonly used for iterating over the elements of an object (list, vector, etc.)

This loop takes the i variable and in each iteration of the loop gives it values 1, 2, 3, ..., 10, and then
exits.

for(i in 1:10) {

 print(i)

}

6/14

forfor
These three loops have the same behavior.

x <- c("a", "b", "c", "d")

for(i in 1:4) {

 print(x[i])

}

for(i in seq_along(x)) {

 print(x[i])

}

for(letter in x) {

 print(letter)

}

for(i in 1:4) print(x[i])

7/14

Nested for loopsNested for loops
for loops can be nested.

Be careful with nesting though. Nesting beyond 2–3 levels is often very difficult to read/understand.

x <- matrix(1:6, 2, 3)

for(i in seq_len(nrow(x))) {

 for(j in seq_len(ncol(x))) {

 print(x[i, j])

 }

}

8/14

whilewhile
While loops begin by testing a condition. If it is true, then they execute the loop body. Once the loop
body is executed, the condition is tested again, and so forth.

While loops can potentially result in infinite loops if not written properly. Use with care!

count <- 0

while(count < 10) {

 print(count)

 count <- count + 1

}

9/14

whilewhile
Sometimes there will be more than one condition in the test.

Conditions are always evaluated from left to right.

z <- 5

while(z >= 3 && z <= 10) {

 print(z)

 coin <- rbinom(1, 1, 0.5)

 if(coin == 1) { ## random walk

 z <- z + 1

 } else {

 z <- z - 1

 }

}

10/14

repeatrepeat
Repeat initiates an infinite loop; these are not commonly used in statistical applications but they do
have their uses. The only way to exit a repeat loop is to call break.

x0 <- 1

tol <- 1e-8

repeat {

 x1 <- computeEstimate()

 if(abs(x1 - x0) < tol) {

 break

 } else {

 x0 <- x1

 }

}

11/14

repeatrepeat
The loop in the previous slide is a bit dangerous because there’s no guarantee it will stop. Better to
set a hard limit on the number of iterations (e.g. using a for loop) and then report whether
convergence was achieved or not.

12/14

next, returnnext, return
next is used to skip an iteration of a loop

return signals that a function should exit and return a given value

for(i in 1:100) {

 if(i <= 20) {

 ## Skip the first 20 iterations

 next

 }

 ## Do something here

}

13/14

Control StructuresControl Structures
Summary

Control structures like if, while, and for allow you to control the flow of an R program

Infinite loops should generally be avoided, even if they are theoretically correct.

Control structures mentiond here are primarily useful for writing programs; for command-line
interactive work, the *apply functions are more useful.

·

·

·

14/14

FunctionsFunctions
Roger D. Peng, Associate Professor of Biostatistics

Johns Hopkins Bloomberg School of Public Health

FunctionsFunctions
Functions are created using the function() directive and are stored as R objects just like anything
else. In particular, they are R objects of class “function”.

Functions in R are “first class objects”, which means that they can be treated much like any other R
object. Importantly,

f <- function(<arguments>) {

 ## Do something interesting

}

Functions can be passed as arguments to other functions

Functions can be nested, so that you can define a function inside of another function

The return value of a function is the last expression in the function body to be evaluated.

·

·

·

2/13

Function ArgumentsFunction Arguments
Functions have named arguments which potentially have default values.

The formal arguments are the arguments included in the function definition

The formals function returns a list of all the formal arguments of a function

Not every function call in R makes use of all the formal arguments

Function arguments can be missing or might have default values

·

·

·

·

3/13

Argument MatchingArgument Matching
R functions arguments can be matched positionally or by name. So the following calls to sd are all
equivalent

Even though it’s legal, I don’t recommend messing around with the order of the arguments too much,
since it can lead to some confusion.

> mydata <- rnorm(100)

> sd(mydata)

> sd(x = mydata)

> sd(x = mydata, na.rm = FALSE)

> sd(na.rm = FALSE, x = mydata)

> sd(na.rm = FALSE, mydata)

4/13

Argument MatchingArgument Matching
You can mix positional matching with matching by name. When an argument is matched by name, it
is “taken out” of the argument list and the remaining unnamed arguments are matched in the order
that they are listed in the function definition.

The following two calls are equivalent.

> args(lm)

function (formula, data, subset, weights, na.action,

 method = "qr", model = TRUE, x = FALSE,

 y = FALSE, qr = TRUE, singular.ok = TRUE,

 contrasts = NULL, offset, ...)

lm(data = mydata, y ~ x, model = FALSE, 1:100)

lm(y ~ x, mydata, 1:100, model = FALSE)

5/13

Argument MatchingArgument Matching
Most of the time, named arguments are useful on the command line when you have a long
argument list and you want to use the defaults for everything except for an argument near the
end of the list

Named arguments also help if you can remember the name of the argument and not its position
on the argument list (plotting is a good example).

·

·

6/13

Argument MatchingArgument Matching
Function arguments can also be partially matched, which is useful for interactive work. The order of
operations when given an argument is

1. Check for exact match for a named argument

2. Check for a partial match

3. Check for a positional match

7/13

Defining a FunctionDefining a Function

In addition to not specifying a default value, you can also set an argument value to NULL.

f <- function(a, b = 1, c = 2, d = NULL) {

}

8/13

Lazy EvaluationLazy Evaluation
Arguments to functions are evaluated lazily, so they are evaluated only as needed.

This function never actually uses the argument b, so calling f(2) will not produce an error because
the 2 gets positionally matched to a.

f <- function(a, b) {

 a^2

}

f(2)

[1] 4

9/13

Lazy EvaluationLazy Evaluation

Notice that “45” got printed first before the error was triggered. This is because b did not have to be
evaluated until after print(a). Once the function tried to evaluate print(b) it had to throw an
error.

f <- function(a, b) {

 print(a)

 print(b)

}

f(45)

[1] 45

Error: argument "b" is missing, with no default

10/13

The “...” ArgumentThe “...” Argument
The ... argument indicate a variable number of arguments that are usually passed on to other
functions.

... is often used when extending another function and you don’t want to copy the entire argument
list of the original function

·

myplot <- function(x, y, type = "l", ...) {

 plot(x, y, type = type, ...)

}

Generic functions use ... so that extra arguments can be passed to methods (more on this later).·

> mean

function (x, ...)

UseMethod("mean")

11/13

The “...” ArgumentThe “...” Argument
The ... argument is also necessary when the number of arguments passed to the function cannot be
known in advance.

> args(paste)

function (..., sep = " ", collapse = NULL)

> args(cat)

function (..., file = "", sep = " ", fill = FALSE,

 labels = NULL, append = FALSE)

12/13

Arguments Coming After the “...” ArgumentArguments Coming After the “...” Argument
One catch with ... is that any arguments that appear after ... on the argument list must be named
explicitly and cannot be partially matched.

> args(paste)

function (..., sep = " ", collapse = NULL)

> paste("a", "b", sep = ":")

[1] "a:b"

> paste("a", "b", se = ":")

[1] "a b :"

13/13

Introduction to the R LanguageIntroduction to the R Language
Scoping Rules

Roger D. Peng, Associate Professor of Biostatistics
Johns Hopkins Bloomberg School of Public Health

A Diversion on Binding Values to SymbolA Diversion on Binding Values to Symbol

How does R know which value to assign to which symbol? When I type

how does R know what value to assign to the symbol lm? Why doesn’t it give it the value of lm that
is in the stats package?

> lm <- function(x) { x * x }

> lm

function(x) { x * x }

2/24

A Diversion on Binding Values to SymbolA Diversion on Binding Values to Symbol

When R tries to bind a value to a symbol, it searches through a series of environments to find the
appropriate value. When you are working on the command line and need to retrieve the value of an
R object, the order is roughly

The search list can be found by using the search function.

1. Search the global environment for a symbol name matching the one requested.

2. Search the namespaces of each of the packages on the search list

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"

[4] "package:grDevices" "package:utils" "package:datasets"

[7] "package:methods" "Autoloads" "package:base"

3/24

Binding Values to SymbolBinding Values to Symbol

The global environment or the user’s workspace is always the first element of the search list and
the base package is always the last.

The order of the packages on the search list matters!

User’s can configure which packages get loaded on startup so you cannot assume that there will
be a set list of packages available.

When a user loads a package with library the namespace of that package gets put in position
2 of the search list (by default) and everything else gets shifted down the list.

Note that R has separate namespaces for functions and non-functions so it’s possible to have an
object named c and a function named c.

·

·

·

·

·

4/24

Scoping RulesScoping Rules

The scoping rules for R are the main feature that make it different from the original S language.

The scoping rules determine how a value is associated with a free variable in a function

R uses lexical scoping or static scoping. A common alternative is dynamic scoping.

Related to the scoping rules is how R uses the search list to bind a value to a symbol

Lexical scoping turns out to be particularly useful for simplifying statistical computations

·

·

·

·

5/24

Lexical ScopingLexical Scoping

Consider the following function.

This function has 2 formal arguments x and y. In the body of the function there is another symbol z.
In this case z is called a free variable. The scoping rules of a language determine how values are
assigned to free variables. Free variables are not formal arguments and are not local variables
(assigned insided the function body).

f <- function(x, y) {

 x^2 + y / z

}

6/24

Lexical ScopingLexical Scoping

Lexical scoping in R means that

the values of free variables are searched for in the environment in which the function was defined.

What is an environment?

An environment is a collection of (symbol, value) pairs, i.e. x is a symbol and 3.14 might be its
value.

Every environment has a parent environment; it is possible for an environment to have multiple
“children”

the only environment without a parent is the empty environment

A function + an environment = a closure or function closure.

·

·

·

·

7/24

Lexical ScopingLexical Scoping

Searching for the value for a free variable:

If the value of a symbol is not found in the environment in which a function was defined, then the
search is continued in the parent environment.

The search continues down the sequence of parent environments until we hit the top-level
environment; this usually the global environment (workspace) or the namespace of a package.

After the top-level environment, the search continues down the search list until we hit the empty
environment. If a value for a given symbol cannot be found once the empty environment is
arrived at, then an error is thrown.

·

·

·

8/24

